LLM Configuration¶
Magentic supports multiple "backends" (LLM providers). These are
openai
: the default backend that uses theopenai
Python package. Supports all features of magentic.from magentic import OpenaiChatModel
anthropic
: uses theanthropic
Python package. Supports all features of magentic, however streaming responses are currently received all at once.pip install "magentic[anthropic]"
from magentic.chat_model.anthropic_chat_model import AnthropicChatModel
litellm
: uses thelitellm
Python package to enable querying LLMs from many different providers. Note: some models may not support all features ofmagentic
e.g. function calling/structured output and streaming.pip install "magentic[litellm]"
from magentic.chat_model.litellm_chat_model import LitellmChatModel
mistral
: uses theopenai
Python package with some small modifications to make the API queries compatible with the Mistral API. Supports all features of magentic, however tool calls (including structured outputs) are not streamed so are received all at once. Note: a future version of magentic might switch to using themistral
Python package.from magentic.chat_model.mistral_chat_model import MistralChatModel
The backend and LLM (ChatModel
) used by magentic
can be configured in several ways. When a magentic function is called, the ChatModel
to use follows this order of preference
- The
ChatModel
instance provided as themodel
argument to the magentic decorator - The current chat model context, created using
with MyChatModel:
- The global
ChatModel
created from environment variables and the default settings in src/magentic/settings.py
from magentic import OpenaiChatModel, prompt
from magentic.chat_model.litellm_chat_model import LitellmChatModel
@prompt("Say hello")
def say_hello() -> str: ...
@prompt(
"Say hello",
model=LitellmChatModel("ollama_chat/llama3"),
)
def say_hello_litellm() -> str: ...
say_hello() # Uses env vars or default settings
with OpenaiChatModel("gpt-3.5-turbo", temperature=1):
say_hello() # Uses openai with gpt-3.5-turbo and temperature=1 due to context manager
say_hello_litellm() # Uses litellm with ollama_chat/llama3 because explicitly configured
The following environment variables can be set.
Environment Variable | Description | Example |
---|---|---|
MAGENTIC_BACKEND | The package to use as the LLM backend | anthropic / openai / litellm |
MAGENTIC_ANTHROPIC_MODEL | Anthropic model | claude-3-haiku-20240307 |
MAGENTIC_ANTHROPIC_API_KEY | Anthropic API key to be used by magentic | sk-... |
MAGENTIC_ANTHROPIC_BASE_URL | Base URL for an Anthropic-compatible API | http://localhost:8080 |
MAGENTIC_ANTHROPIC_MAX_TOKENS | Max number of generated tokens | 1024 |
MAGENTIC_ANTHROPIC_TEMPERATURE | Temperature | 0.5 |
MAGENTIC_LITELLM_MODEL | LiteLLM model | claude-2 |
MAGENTIC_LITELLM_API_BASE | The base url to query | http://localhost:11434 |
MAGENTIC_LITELLM_MAX_TOKENS | LiteLLM max number of generated tokens | 1024 |
MAGENTIC_LITELLM_TEMPERATURE | LiteLLM temperature | 0.5 |
MAGENTIC_MISTRAL_MODEL | Mistral model | mistral-large-latest |
MAGENTIC_MISTRAL_API_KEY | Mistral API key to be used by magentic | XEG... |
MAGENTIC_MISTRAL_BASE_URL | Base URL for an Mistral-compatible API | http://localhost:8080 |
MAGENTIC_MISTRAL_MAX_TOKENS | Max number of generated tokens | 1024 |
MAGENTIC_MISTRAL_SEED | Seed for deterministic sampling | 42 |
MAGENTIC_MISTRAL_TEMPERATURE | Temperature | 0.5 |
MAGENTIC_OPENAI_MODEL | OpenAI model | gpt-4 |
MAGENTIC_OPENAI_API_KEY | OpenAI API key to be used by magentic | sk-... |
MAGENTIC_OPENAI_API_TYPE | Allowed options: "openai", "azure" | azure |
MAGENTIC_OPENAI_BASE_URL | Base URL for an OpenAI-compatible API | http://localhost:8080 |
MAGENTIC_OPENAI_MAX_TOKENS | OpenAI max number of generated tokens | 1024 |
MAGENTIC_OPENAI_SEED | Seed for deterministic sampling | 42 |
MAGENTIC_OPENAI_TEMPERATURE | OpenAI temperature | 0.5 |
When using the openai
backend, setting the MAGENTIC_OPENAI_BASE_URL
environment variable or using OpenaiChatModel(..., base_url="http://localhost:8080")
in code allows you to use magentic
with any OpenAI-compatible API e.g. Azure OpenAI Service, LiteLLM OpenAI Proxy Server, LocalAI. Note that if the API does not support tool calls then you will not be able to create prompt-functions that return Python objects, but other features of magentic
will still work.
To use Azure with the openai backend you will need to set the MAGENTIC_OPENAI_API_TYPE
environment variable to "azure" or use OpenaiChatModel(..., api_type="azure")
, and also set the environment variables needed by the openai package to access Azure. See https://github.com/openai/openai-python#microsoft-azure-openai